Extracting Envelopes of Rossby Wave Packets

2003 ◽  
Vol 131 (5) ◽  
pp. 1011-1017 ◽  
Author(s):  
Aleksey V. Zimin ◽  
Istvan Szunyogh ◽  
D. J. Patil ◽  
Brian R. Hunt ◽  
Edward Ott
Keyword(s):  
2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2018 ◽  
Vol 146 (12) ◽  
pp. 4099-4114 ◽  
Author(s):  
Paolo Ghinassi ◽  
Georgios Fragkoulidis ◽  
Volkmar Wirth

AbstractUpper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


2020 ◽  
Author(s):  
Syed Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Synoptic-scale Rossby wave-packets have a recurrent pattern during several episodes of persistent surface weather which is termed as 'recurrent Rossby wave-packets' (RRWP). They result in a statistically significant increase in winter cold and summer hot spells over large areas of the Northern Hemisphere mid-latitudes.</p><p>We present a global climatology of the RRWPs to study its spatial and seasonal variation. We also investigate the link of RRWPs to persistent surface extremes in the Southern Hemisphere (SH).  We find that RRWPs result in a statistically significant increase in winter cold and summer hot spells over broad areas in Australia and South America. Furthermore, we discuss the effects of climatological oscillations (Madden Julian Oscillation, ENSO, etc) on influencing the RRWPs.</p>


2017 ◽  
Vol 145 (8) ◽  
pp. 3247-3264 ◽  
Author(s):  
Gabriel Wolf ◽  
Volkmar Wirth

It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.


2015 ◽  
Vol 143 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Gabriel Wolf ◽  
Volkmar Wirth

Abstract Upper-tropospheric Rossby wave packets have received increased attention recently. In most previous studies wave packets have been detected by computing the envelope of the meridional wind field using either complex demodulation or a Hilbert transform. The latter requires fewer choices to be made and appears, therefore, preferable. However, the Hilbert transform is fraught with a significant problem, namely, a tendency that fragments a single wave packet into several parts. The problem arises because Rossby wave packets show substantial deviations from the almost-plane wave paradigm, a feature that is well represented by semigeostrophic dynamics. As a consequence, higher harmonics interfere with the reconstruction of the wave envelope leading to undesirable wiggles. A possible cure lies in additional smoothing (e.g., by means of a filter) or resorting to complex demodulation (which implies smoothing, too). Another possibility, which does not imply any smoothing, lies in applying the Hilbert transform in semigeostrophic coordinate space. It turns out beneficial to exclude planetary-scale wavenumbers from this transformation in order to avoid problems in cases when the wave packet travels on a low wavenumber quasi-stationary background flow.


2016 ◽  
Vol 73 (3) ◽  
pp. 1063-1081 ◽  
Author(s):  
Franziska Teubler ◽  
Michael Riemer

Abstract Rossby wave packets (RWPs) have been associated with increased atmospheric predictability but also with the growth and propagation of forecast uncertainty. To address the important question of under which conditions RWPs imply high and low predictability, a potential vorticity–potential temperature (PV–θ) framework is introduced to diagnose RWP dynamics. Finite-amplitude RWPs along the midlatitude waveguide are considered and are represented by the synoptic-scale, wavelike undulations of the tropopause. The evolution of RWPs is examined by the amplitude evolution of the individual troughs and ridges. Troughs and ridges are identified as PV anomalies on θ levels intersecting the midlatitude tropopause. By partitioning the PV-tendency equation, individual contributions to the amplitude evolution are identified. A novel aspect is that the important role of the divergent flow and the diabatic PV modification is quantified explicitly. Arguably, prominent upper-tropospheric divergent flow is associated to a large extent with latent-heat release below and can thus be considered as an indirect diabatic impact. A case study of an RWP evolution over 7 days illustrates the PV–θ diagnostic. In general, baroclinic coupling and, important, the divergent flow make contributions to the amplitude evolution of individual troughs and ridges that are comparable in magnitude to the wave’s group propagation. Diabatic PV modification makes a subordinate contribution to the evolution. The relative importance of the different processes exhibits considerable variability between individual troughs and ridges. A discussion of the results in light of recent studies on forecast errors and predictability concludes the paper.


2021 ◽  
Author(s):  
Iago Perez ◽  
Marcelo Barreiro ◽  
Cristina Masoller

<p>Rossby Wave Packets (RWPs) are key to the improvement of  long-range forecasting and for the prediction of sub-seasonal extremes. Several studies have focused on their properties, such as time duration, trajectory, areas of detection and dissipation as well as interannual variability in the northern hemisphere, but only a few of them have focused in the southern hemisphere. Here we study the influence of low-frequency climate modes on RWPs during southern hemisphere summer using NCEP DOE 2 Reanalysis data. Focusing on long-lived RWPs, which we define as RWPs with a lifespan above 8 days,  we determine how El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) modify their frequency of occurrence and their main areas of detection and dissipation. We found that during El Niño and negative SAM years, the number of long-lived RWPs is maximum. In addition, years with the highest amount of long-lived RWPs show a zonally symmetric and narrow upper level jet that is shifted northward from its climatological position. On the other hand, when the jet is shifted southward, particularly in the southeastern Pacific, during positive SAM phases, only a small number of long-lived RWPs is detected. Therefore, negative SAM conditions provide a background mean flow that favours the occurrence of long-lived RWPs while positive SAM conditions have the opposite effect. The dependence on ENSO phase is not as symmetric: while El Niño sets atmospheric conditions that favour the formation of long-lived RWPs, La Niña years present high interannual variability in the frequency of occurrence. Furthermore, in El Niño events the main formation area is between 61-120ºE and the main dissipation area between 300-359ºE. During La Niña events, the main formation area is located by 241-300ºE and no main dissipation area is identified. In the case of positive SAM two main formation areas appear at 61-120ºE and 241-300ºE and two main dissipation areas within 121-180 and 301-359ºE. Lastly in the case of negative SAM one main formation area at 241-300ºE is detected and no main dissipation area is detected. The robustness of the results was tested repeating the analysis using data from the ERA5 Reanalysis and supports the finding that the maximum number of long-lived RWPs occur during negative SAM and El Niño years</p>


Sign in / Sign up

Export Citation Format

Share Document